Functional differential equations for the q-Fourier transform of q-Gaussians

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2010 J. Phys. A: Math. Theor. 43095202
(http://iopscience.iop.org/1751-8121/43/9/095202)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.158
The article was downloaded on 03/06/2010 at 08:57

Please note that terms and conditions apply.

Functional differential equations for the q-Fourier transform of \boldsymbol{q}-Gaussians

S Umarov ${ }^{1}$ and \mathbf{S} M Duarte Queirós ${ }^{2}$
${ }^{1}$ Department of Mathematics, Tufts University, Medford, MA, USA
${ }^{2}$ Unilever R\&D Port Sunlight, Quarry Road East, Wirral, CH63 3JW, UK
E-mail: sdqueiro@gmail.com

Received 8 September 2009, in final form 7 January 2010
Published 15 February 2010
Online at stacks.iop.org/JPhysA/43/095202

Abstract

In this paper the question 'is the q-Fourier transform of a q-Gaussian a q^{\prime} Gaussian (with some q^{\prime}) up to a constant factor?' is studied for the whole range of $q \in(-\infty, 3)$. This question is connected with applicability of the q-Fourier transform in the study of limit processes in nonextensive statistical mechanics. Using the functional differential equation approach we prove that the answer is affirmative if and only if $1 \leqslant q<3$, excluding two particular cases of $q<1$, namely $q=\frac{1}{2}$ and $q=\frac{2}{3}$. Complementarily, we discuss some applications of the q-Fourier transform to nonlinear partial differential equations such as the porous medium equation.

PACS numbers: $02.30 . \mathrm{Sa}, 02.30 . \mathrm{Uu}, 89.65 . \mathrm{Gh}, 89.75 . \mathrm{Da}$
Mathematics Subject Classification: 35Q84, 37A50, 43A32, 65L03

1. Introduction

Approximately a century after Boltzmann's seminal works which have turned into the cornerstones of statistical mechanics, Tsallis [1] introduced an entropic form aimed to accommodate the description of systems whose fundamental features may not be fitted in the Boltzmann-Gibbs formalism (see details in [2-4]). Tsallis' entropic form, which is usually called the non-additive q-entropy, recovers the classic Boltzmann-Gibbs entropic form, $S(f)=-\int f(x) \ln f(x) \mathrm{d} x$ in the limit case $q \rightarrow 1$. Concomitantly, there is the nonextensive statistical mechanics formalism based on q-algebra and the q-Gaussian probability density function, which maximizes q-entropy under certain appropriate constraints (see [1,5] and references therein). Recently, the q-Fourier transform [6] was introduced as a tool for the study of attractors of strongly correlated random variables in conjunction with the q-central limit theorem. The existence of such a theorem within nonextensive statistical mechanics was first conjectured in [7, 8]. In this paper we shed light on the question-whether the q-Fourier transform of a q-Gaussian is a q^{\prime}-Gaussian, clarifying thereupon applicability of the q-Fourier
transform technique as a mathematical tool. A key to this matter is crucial because the q Fourier transform is relevant to the study of limit distributions of strongly correlated random variables, as well as to solutions of partial differential equations with physical significance. Moreover, a positive answer implies validating a mapping relation of q onto q^{\prime} obtained from the q-Fourier transform. This relation has been predominant for the establishment of other stable distributions, namely the (q, α)-stable distributions [9]. We recall that, by definition, the q-Fourier transform of a nonnegative $f \in L_{1}(R)$ is defined by the formula

$$
\begin{equation*}
F_{q}[f](\xi)=\int_{\operatorname{supp} f} e_{q}^{\mathrm{i} x \xi} \otimes_{q} f(x) \mathrm{d} x, \quad \xi \in(-\infty, \infty) \tag{1}
\end{equation*}
$$

where $q<3$, the symbol \otimes_{q} stands for the q-product and

$$
\begin{equation*}
e_{q}^{z}=(1+(1-q) z)^{1 /(1-q)}, \quad z \in C \tag{2}
\end{equation*}
$$

is a q-exponential, which is the usual exponential function e^{z} in the limit $q \rightarrow 1$, and defined for all $z \in C \backslash z_{0}, z_{0}=-1 /(1-q)$, with principal values along the cut $\left(-\infty, z_{0}\right)$ if $q \neq 1$ (see $[6,7]$ for details). The equality

$$
e_{q}^{\mathrm{i} x \xi} \otimes_{q} f(x)=f(x) e_{q}^{\frac{\mathrm{i} \mathrm{k} \xi}{[(x)]^{1}-q}}
$$

valid for all $x \in \operatorname{supp} f$ implies the following representation for the q-Fourier transform without usage of the q-product:

$$
\begin{equation*}
F_{q}[f](\xi)=\int_{\text {supp } f} f(x) e_{q}^{\mathrm{i} x \xi[f(x)]^{q-1}} \mathrm{~d} x \tag{3}
\end{equation*}
$$

The paper is organized as follows: in section 2 we mention some properties of the q Fourier transform. In section 3 we derive functional differential equations for the q-Fourier transform of q-Gaussians. Then, based on the results of this section, we show that the answer to the above question is affirmative for all $1 \leqslant q<3$, and for two particular values of $q<1$, namely for $q=1 / 2$ and $q=2 / 3$. We also show that if $q<1$, except two values mentioned above, the q-Fourier transform of a q-Gaussian is no longer a q^{\prime}-Gaussian, $\forall q^{\prime}<3$. A relevant physical application of the q-Fourier transform and the functional differential equations studied in section 3 is addressed in section 4 .

2. Preliminaries

Representation (3) for the q-Fourier transform implies the following proposition.
Proposition 2.1. For any constants $a>0, b \neq 0$,
(i) $F_{q}[a f(x)](\xi)=a F_{q}[f(x)]\left(\frac{\xi}{a^{1-q}}\right)$;
(ii) $F_{q}[f(b x)](\xi)=\frac{1}{b} F_{q}[f(x)]\left(\frac{\xi}{b}\right)$.

Let β be a positive number. By definition, the function

$$
\begin{equation*}
G_{q}(\beta ; x)=\frac{\sqrt{\beta}}{C_{q}} e_{q}^{-\beta x^{2}} \tag{4}
\end{equation*}
$$

with domains given below, is called a q-Gaussian density function:
(i) if $q<1$, then $G_{q}(\beta ; x)$ is defined on the compact set $\left[-K_{\beta}, K_{\beta}\right]$, where $K_{\beta}=$ $(\beta(1-q))^{-1 / 2}$;
(ii) if $1 \leqslant q<3$, then $G_{q}(\beta ; x)$ is defined on the whole real axis $\mathbb{R}=(-\infty, \infty)$.

In expression (4) C_{q} is the normalizing constant, i.e. $C_{q}=\int_{-\infty}^{\infty} e_{q}^{-x^{2}} \mathrm{~d} x$, whose explicit form is given by (see, e.g., [6])

$$
C_{q}= \begin{cases}\frac{2 \sqrt{\pi} \Gamma\left(\frac{1}{1-q}\right)}{(3-q) \sqrt{1-q} \Gamma\left(\frac{3-q}{2(1-q)}\right)}, & -\infty<q<1 \tag{5}\\ \sqrt{\pi}, & q=1, \\ \frac{\sqrt{\pi} \Gamma\left(\frac{3-q}{2(q-1)}\right)}{\sqrt{q-1} \Gamma\left(\frac{1}{q-1}\right)}, & 1<q<3\end{cases}
$$

We use the convention $K_{\beta}=\infty$ if $q \geqslant 1$, since, by definition, the support of the q-Gaussian is not bounded in this case.

Note that q-exponentials possess the property $e_{q}^{z} \otimes_{q} e_{q}^{w}=e_{q}^{z+w}[12,13]$. This immediately implies the following assertion.

Proposition 2.2. For all $q<3$ the q-Fourier transform of $e_{q}^{-\beta x^{2}}, \beta>0$, can be written in the form

$$
\begin{equation*}
F_{q}\left[e_{q}^{-\beta x^{2}}\right](\xi)=\int_{-K_{\beta}}^{K_{\beta}} e_{q}^{-\beta x^{2}+\mathrm{ix} \mathrm{\xi}} \mathrm{~d} x \tag{6}
\end{equation*}
$$

Corollary 2.3. Let $q<3$. Then

$$
F_{q}\left[e_{q}^{-\beta x^{2}}\right](\xi)=2 \int_{0}^{K_{\beta}} e_{q}^{-\beta x^{2}} \cos _{q}\left(\frac{x \xi}{\left[e_{q}^{-\beta x^{2}}\right]^{1-q}}\right) \mathrm{d} x, \quad \forall q
$$

where

$$
\cos _{q}(x)=\frac{e_{q}^{\mathrm{i} x}+e_{q}^{-\mathrm{i} x}}{2}
$$

The assertion below was proved in [6].
Proposition 2.4. Let $1 \leqslant q<3$. Then

$$
\begin{equation*}
F_{q}\left[G_{q}(\beta ; x)\right](\xi)=e_{q_{1}}^{-\beta_{*} \xi^{2}}, \quad \xi \in \mathbb{R} \tag{7}
\end{equation*}
$$

where $q_{1}=\frac{1+q}{3-q}$ and $\beta_{*}=\frac{3-q}{8 \beta^{2-q} C_{q}^{2(q-1)}}$.
Proposition 2.5. Let $q<1$. Then
$F_{q}\left[G_{q}(\beta, x)\right](\xi)=e_{q_{1}}^{-\beta_{*} \xi^{2}}\left(1-\frac{2}{C_{q}} \operatorname{Im} \int_{0}^{d_{\xi}} e_{q}^{b_{\xi}+\mathrm{i} \tau} \mathrm{d} \tau\right), \quad \xi \in\left(-K_{\frac{1}{4 \beta}}, K_{\frac{1}{4 \beta}}\right)$,
where q_{1} and β_{*} are as in proposition 2.4 and $b_{\xi}+\mathrm{i} d_{\xi}=\frac{K_{\beta} \sqrt{\beta}-\mathrm{i} \frac{\xi}{2 \sqrt{\beta}}}{\left[e_{q}^{-\frac{\xi^{2}}{4 \beta}}\right]^{\frac{1-q}{2}}}$.
Proof. The proof of this statement can be obtained applying the Cauchy theorem, that is by integrating the function $e_{q}^{-\beta z^{2}+\mathrm{i} \xi \xi}$ over the closed contour $C=C_{0} \cup C_{1} \cup C_{-} \cup C_{+}$, where $C_{p}=\left(-K_{\beta}+p \mathrm{i}, K_{\beta}+\mathrm{i} p\right), p=0,1$, and $C_{ \pm}=\left[\pm K_{\beta}, \pm K_{\beta}+\mathrm{i}\right]$.

Unifying propositions 2.4 and 2.5 ,

$$
F_{q}\left[G_{q}(\beta, x)\right](\xi)=e_{q_{1}}^{-\beta_{*} \xi^{2}}+I_{(-\infty, 0)}(q) T_{q}(\xi)
$$

where $I_{(a, b)}(\cdot)$ designates the indicator function of an interval (a, b), and

$$
T_{q}(\xi)=-\frac{2}{C_{q}} e_{q_{1}}^{-\beta_{*} \xi^{2}} \operatorname{Im} \int_{0}^{d_{\xi}} e_{q}^{b_{\xi}+\mathrm{i} \tau} \mathrm{~d} \tau
$$

Thus, for $q \geqslant 1$, the operator F_{q} transforms a q-Gaussian into a q_{1}-Gaussian with the factor $C_{q_{1}} \beta^{-1 / 2}$. However, for $q<1$ the additional tail $T_{q}(\xi)$ appears.

Further, introduce a sequence q_{n} defined as

$$
\begin{equation*}
q_{n}=\frac{2 q-n(q-1)}{2-n(q-1)} \tag{8}
\end{equation*}
$$

where $-\infty<n<\frac{2}{q-1}-1$ if $1<q<3$, and $n>-\frac{2}{1-q}$ if $q<1$. Obviously, $q_{0}=q$. Note also that if $q=1$, then $q_{n}=1$ for all $n=0, \pm 1, \ldots$ Let \mathbb{Z} be the set of all integer numbers. Denote by \mathbb{N}_{q} a subset of \mathbb{Z} defined as

$$
\mathbb{N}_{q}= \begin{cases}\left\{n \in \mathbb{Z}: n<\frac{2}{q-1}-1\right\}, & \text { if } \quad 1<q<3 \\ \mathbb{Z}, & \text { if } \quad q=1 \\ \left\{n \in \mathbb{Z}: n>-\frac{2}{1-q}\right\}, & \text { if } \quad q<1\end{cases}
$$

Proposition 2.6. For all $n \in \mathbb{N}_{q}$ the following relations hold:
(i) $\left(3-q_{n}\right) q_{n+1}=\left(3-q_{n-2}\right) q_{n}$,
(ii) $2 C_{q_{n-2}}=\sqrt{q_{n}}\left(3-q_{n}\right) C_{q_{n}}$.

Proof.

(i) It follows from the definition of q_{n} that $q_{n+1}=\left(1+q_{n}\right) /\left(3-q_{n}\right)$. This yields

$$
\begin{equation*}
\left(3-q_{n}\right) q_{n+1}=1+q_{n}=\left(1+\frac{1}{q_{n}}\right) q_{n} . \tag{9}
\end{equation*}
$$

Further, it is easy to verify that the equality $q_{k-1}+q_{k+1}^{-1}=2$ holds for all $k \in \mathbb{N}_{q}$. Applying this relationship for $k=n-1$, we have $1 / q_{n}=2-q_{n-2}$. Now taking this into account in (9), we obtain (i).
(ii) Obviously, for $q=1$ relationship (ii) reads $2 \sqrt{\pi}=2 \sqrt{\pi}$. Let $q \neq 1$. Note that for any $n \in \mathbb{N}_{q}$ the condition $1<q<3$ implies $1<q_{n}<3$, as well as the condition $q<1$ implies $q_{n}<1$. Using the explicit forms for C_{q} given in (5) and the relationship $2-q_{n-2}=1 / q_{n}$, one obtains in the case $1<q<3$

$$
\frac{2 C_{n-2}}{C_{n}}=\frac{\sqrt{q_{n}} \Gamma\left(\frac{1+q_{n}}{2\left(q_{n}-1\right)}\right)}{\frac{1}{2\left(q_{n}-1\right)} \Gamma\left(\frac{3-q_{n}}{2\left(q_{n}-1\right)}\right)}=\sqrt{q_{n}}\left(3-q_{n}\right) ;
$$

and in the case $q<1$

$$
\frac{2 C_{n-2}}{C_{n}}=\frac{\sqrt{q_{n}}\left(3-q_{n}\right)}{\frac{1+q_{n}}{2\left(1-q_{n}\right)}} \frac{\Gamma\left(\frac{3-q_{n}}{2\left(1-q_{n}\right)}\right)}{\Gamma\left(\frac{1+q_{n}}{2\left(1-q_{n}\right)}\right)}=\sqrt{q_{n}}\left(3-q_{n}\right),
$$

completing the proof of part (ii).

3. Main results

3.1. Functional differential equations

Let $g_{q}(\beta, \xi)$ be the q-Fourier transform of a q-Gaussian $G_{q}(\beta, \xi)$, i.e. $g_{q}(\beta, \xi)=$ $F_{q}\left[G_{q}(\beta, x)\right](\xi)$, and $g_{q}(\xi)=g_{q}(1, \xi)$ for $\beta=1$. Further, let $Y_{q}(\xi)=F_{q}\left[e_{q}^{-x^{2}}\right](\xi)$. In accordance with proposition 2.2 ,

$$
\begin{equation*}
Y_{q}(\xi)=\int_{-K}^{K} e_{q}^{-x^{2}+\mathrm{i} x \xi} \mathrm{~d} x, \quad \xi \in \mathbb{R} \tag{10}
\end{equation*}
$$

where $K=K_{1}=\frac{1}{\sqrt{1-q}}$ if $q<1$, and $K=\infty$, if $q \geqslant 1$.
Lemma 3.1. For any $q<3$ and $\beta>0$ we have
(i) $g_{q}(\beta, \xi)=g_{q}\left(\frac{\xi}{(\sqrt{\bar{B}})^{2-q}}\right)$;
(ii) $g_{q}(\xi)=\frac{1}{C_{q}} Y_{q}\left(C_{q}^{1-q} \xi\right)$.

Proof. The proof straightforwardly follows from the properties of the operator F_{q} indicated in proposition 2.1.

These two formulas yield

$$
\begin{equation*}
F_{q}\left[G_{q}(\beta, x)\right](\xi)=\frac{1}{C_{q}} Y_{q}\left(\left(\frac{C_{q}}{\sqrt{\beta}}\right)^{1-q} \frac{\xi}{\sqrt{\beta}}\right) \tag{11}
\end{equation*}
$$

Moreover, $g_{q}(\beta, 0)=1$, which implies $g_{q}(0)=1$ and $Y_{q}(0)=C_{q}$. Thus, in order to know the properties of the q-Fourier transform of q-Gaussians it suffices to study $Y_{q}(\xi)$.

Theorem 3.2. Let $1 \leqslant q<3$ and $q_{n}, n \in \mathbb{N}_{q}$, are defined in equation (8). Then $Y_{q_{n}}(\xi)$ satisfies the following homogeneous functional differential equation:

$$
\begin{equation*}
2 \sqrt{q_{n}} \frac{\mathrm{~d} Y_{q_{n}}(\xi)}{\mathrm{d} \xi}+\xi Y_{q_{n-2}}\left(\sqrt{q_{n}} \xi\right)=0, \quad \xi \in \mathbb{R} \tag{12}
\end{equation*}
$$

Proof. Differentiating $Y_{q}(\xi)=\int_{-K}^{K} e_{q}^{-x^{2}+\mathrm{i} x \xi} \mathrm{~d} x$ with respect to ξ, we have

$$
\frac{\mathrm{d} Y_{q}(\xi)}{\mathrm{d} \xi}=\mathrm{i} \int_{-K}^{K} x\left(e_{q}^{-x^{2}+\mathrm{i} x \xi}\right)^{q} \mathrm{~d} x
$$

Further, integrating by parts,

$$
\begin{equation*}
\frac{\mathrm{d} Y_{q}(\xi)}{\mathrm{d} \xi}=\frac{-\mathrm{i}}{2} \int_{-K}^{K} \mathrm{~d}\left(e_{q}^{-x^{2}+\mathrm{i} x \xi}\right)-\frac{\xi}{2} \int_{-K}^{K}\left(e_{q}^{-x^{2}+\mathrm{i} x \xi}\right)^{q} \mathrm{~d} x \tag{13}
\end{equation*}
$$

Obviously, the first integral vanishes if $q \geqslant 1$. Further, using $\left(e_{q}^{y}\right)^{q}=e_{2-1 / q}^{q y}$, which is valid for any $q<3$ (see [6]), the second integral can be represented in the form

$$
\begin{equation*}
\int_{-K}^{K}\left(e_{q}^{-x^{2}+\mathrm{i} x \xi}\right)^{q} \mathrm{~d} x=\frac{1}{\sqrt{q}} \int_{-K}^{K} e_{2-1 / q}^{-x^{2}+\mathrm{i} x \sqrt{q} \xi} \mathrm{~d} x=\frac{1}{\sqrt{q}} Y_{2-1 / q}(\sqrt{q} \xi) . \tag{14}
\end{equation*}
$$

Hence, for $q \geqslant 1$ the function $F_{q}\left[e_{q}^{-x^{2}}\right](\xi)$ satisfies the functional differential equation

$$
\begin{equation*}
2 \sqrt{q} \frac{\mathrm{~d} Y_{q}(\xi)}{\mathrm{d} \xi}+\xi Y_{2-1 / q}(\sqrt{q} \xi)=0 \tag{15}
\end{equation*}
$$

Setting $q=q_{n}, n \in \mathbb{N}_{q}$, and taking into account the relation $2-1 / q_{n}=q_{n-2}$, we obtain equation (12).

Theorem 3.3. Let $0<q<1$ and $q \neq l /(l+1), l=1,2, \ldots$ Then $Y_{q_{n}}(\xi)$ satisfies the following inhomogeneous functional differential equation:

$$
\begin{equation*}
2 \sqrt{q_{n}} \frac{\mathrm{~d} Y_{q_{n}}(\xi)}{\mathrm{d} \xi}+\xi Y_{q_{n-2}}\left(\sqrt{q_{n}} \xi\right)=r_{q_{n}} \xi^{\frac{1}{1-q_{n}}}, \quad \xi \in \mathbb{R} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{q_{n}}=2 \sqrt{q_{n}} \sin \frac{\pi}{2\left(1-q_{n}\right)}\left(1-q_{n}\right)^{\frac{1}{2\left(1-q_{n}\right)}} . \tag{17}
\end{equation*}
$$

Proof. Assume that $0<q<1$ and $q \neq \frac{l}{l+1}, l=1,2, \ldots$ In this case the first integral on the right-hand side of (13) does not vanish, and takes the form

$$
\int_{-K}^{K} \mathrm{~d}\left(e_{q}^{-x^{2}+\mathrm{i} x \xi}\right)=e_{q}^{-K^{2}+\mathrm{i} K \xi}-e_{q}^{-K^{2}-\mathrm{i} K \xi}=2 \mathrm{i} \operatorname{Im} e_{q}^{-K^{2}+\mathrm{i} K \xi} .
$$

Since supp $e_{q}^{-x^{2}}=[-K, K]$, one has $e_{q}^{-K^{2}}=0$. Hence,

$$
e_{q}^{-K^{2}+\mathrm{i} K \xi}=0 \otimes_{q} e_{q}^{\mathrm{i} K \xi}=[\mathrm{i}(1-q) K \xi]^{\frac{1}{1-q}} .
$$

Further, taking into account that $K=1 / \sqrt{1-q}$, one obtains

$$
\operatorname{Im}[\mathrm{i}(1-q) K \xi]^{\frac{1}{1-q}}=(1-q)^{\frac{1}{2(1-q)}} \sin \frac{\pi}{2(1-q)} \xi^{\frac{1}{1-q}}
$$

Note that the second integral on the right-hand side of equation (13) is the same as in the case of $1<q<3$. Consequently, $F_{q}\left[e_{q}^{-x^{2}}\right](\xi)$ satisfies the functional differential equation

$$
\begin{equation*}
2 \sqrt{q} \frac{\mathrm{~d} Y_{q}(\xi)}{\partial \xi}+\xi Y_{2-1 / q}(\sqrt{q} \xi)=r_{q} \xi^{\frac{1}{1-q}} \tag{18}
\end{equation*}
$$

where

$$
r_{q}=2 \sqrt{q}(1-q)^{\frac{1}{2(1-q)}} \sin \frac{\pi}{2(1-q)}
$$

Again, setting $q=q_{n}, n \in \mathbb{N}_{q}$, we arrive at the functional differential equation (16).

Remark 3.4.

(i) If $q=0$, then it is readily seen that $Y_{0}(\xi)=F_{0}\left[e_{0}^{-x^{2}}\right](\xi)=\int_{-1}^{1}\left(1-x^{2}+\mathrm{i} x \xi\right) \mathrm{d} x=4 / 3$ for all $\xi \in \mathbb{R}$. Obviously, such $Y_{0}(\xi)$ cannot be a q^{\prime}-Gaussian for any q^{\prime}.
(ii) We will show later that a q-Fourier image of any q-Gaussian with $q<0$ cannot be a function of the form $a e_{q^{\prime}}^{-\beta \xi^{2}}$, for any $q^{\prime} \in(-\infty, 3)$ (see theorem 3.16).

Let us now consider the cases $q=\ell /(\ell+1), \ell=1,2, \ldots$, excluded from theorem 3.3. For these values of q we have $K=\sqrt{\ell+1}$ and

$$
Y_{q}(\xi)=F_{q}\left[e_{q}^{-x^{2}}\right](\xi)=\int_{-\sqrt{\ell+1}}^{\sqrt{\ell+1}}\left(1-\frac{1}{\ell+1} x^{2}+\frac{1}{\ell+1} \mathrm{i} x \xi\right)^{\ell+1} \mathrm{~d} x
$$

The latter is a polynomial of order ℓ if ℓ is even, and of order $\ell+1$ if ℓ is odd ${ }^{3}$. In order to reflect this fact we use the conventional notation $P_{\ell+1}(\xi)=Y_{\ell /(\ell+1)}(\xi)$ indicating the dependence on ℓ. Further, obviously $2-\frac{1}{q}=\frac{\ell-1}{\ell}$. Consequently,

$$
Y_{2-1 / q}(\xi)=\int_{-\sqrt{\ell}}^{\sqrt{\ell}}\left(1-\frac{1}{\ell} x^{2}+\frac{1}{\ell} \mathrm{i} x \xi\right)^{\ell} \mathrm{d} x=P_{\ell}(\xi)
$$

[^0]and we note that $P_{\ell}(\xi)$ is a polynomial of order ℓ if ℓ is even, and of order $\ell-1$ if ℓ is odd. Moreover, $P_{\ell}(\xi)$ is a symmetric function of ξ and $P_{\ell}(0)=C_{\frac{\ell-1}{\ell}}>0$. Let ρ be a root of $P_{\ell}(\xi)$ closest to the origin. We will consider $P_{\ell}(\xi)$ only on its positivity interval $(-\rho, \rho)$.
Theorem 3.5. Let $q=\frac{2 m-1}{2 m}, m=1,2, \ldots$ Then $Y_{q}(\xi)$ satisfies equation (12).
Proof. Assume $\ell+1=2 m, m=1,2, \ldots$ In this case $Y_{q}(\xi)=P_{2 m}(\xi)$ is a polynomial of order $2 m$ and $Y_{2-1 / q}(\xi)=P_{2 m-1}(\xi)$ is a polynomial of order $2 m-2$. Moreover, it is easy to check $r_{q}=0$. Thus, $Y_{q}(\xi)$ satisfies the consistent equation
\[

$$
\begin{equation*}
2 \sqrt{q} \frac{\mathrm{~d} Y_{q}(\xi)}{\mathrm{d} \xi}+\xi Y_{2-1 / q}(\sqrt{q} \xi)=0, \quad \xi \in \mathbb{R} \tag{19}
\end{equation*}
$$

\]

Theorem 3.6. Let $q=\frac{2 m}{2 m+1}, m=1,2, \ldots$ Then $Y_{q}(\xi)$ satisfies neither equation (12) nor (16).

Proof. Let $\ell=2 m, m=1,2, \ldots$. Then $Y_{q}(\xi)=P_{2 m+1}(\xi)$ is a polynomial of order $2 m$, and so is $Y_{2-1 / q}(\xi)=P_{2 m}(\xi)$. Assume that $Y_{q}(\xi)$ satisfies equation (12), which in this particular case takes the form

$$
\begin{equation*}
2 \sqrt{q} \frac{\mathrm{~d} Y_{q}(\xi)}{\mathrm{d} \xi}+\xi P_{2 m}(\xi)=0 \tag{20}
\end{equation*}
$$

Equation (20) is clearly inconsistent, since the derivative of a polynomial of order $2 m$ cannot be a polynomial of order $2 m+1$. Analogously, $Y_{q}(\xi)$ cannot satisfy equation (16) either. Indeed, if $Y_{q}(\xi)$ solves equation (16), then in this particular case the equation would read

$$
\begin{equation*}
2 \sqrt{q} \frac{\mathrm{~d} Y_{q}(\xi)}{\mathrm{d} \xi}+\xi P_{2 m}(\xi)=\frac{(-1)^{m}}{(2 m-1)^{m-\frac{1}{2}}} \xi^{2 m+1} \tag{21}
\end{equation*}
$$

Equation (21) is inconsistent, since the term of the highest order on the left-hand side is $\frac{2(-1)^{m}}{(2 m+1)(2 m)^{m-1 / 2}} \xi^{2 m+1}$, which is clearly distinct from the term of the highest order on the righthand side.

Remark 3.7. Equations (12) and (16) can be easily generalized for the q-Fourier transform of q-Gaussians with nonzero means. Namely, let $\mu \neq 0$ be a real number, and

$$
Y_{\mu, q}(\xi)=\int_{\mu-K}^{\mu+K} e_{q}^{-(x-\mu)^{2}+\mathrm{i} x \xi} \mathrm{~d} x
$$

Then the associated functional differential equation for $Y_{\mu, q_{n}}$ with $q_{n} \in(0,3)$ takes the form
$2 \sqrt{q_{n}} \frac{\mathrm{~d} Y_{\mu, q_{n}}(\xi)}{\mathrm{d} \xi}+\xi Y_{\frac{\mu}{q_{n}}, q_{n-2}}\left(\sqrt{q_{n}} \xi\right)-2 \mathrm{i} \mu \sqrt{q_{n}} Y_{\mu, q_{n}}(\xi)=I_{(0,1)}\left(q_{n}\right) r_{q_{n}} \xi^{\frac{1}{1-q_{n}}}$.

3.2. Is the q-Fourier transform of a q-Gaussian a q^{\prime}-Gaussian?

In this section we discuss a question important from applications point of view. Namely, we prove when the q-Fourier transform of a q-Gaussian is a q^{\prime}-Gaussian with some index q^{\prime} in $(-\infty, 3)$. With this aim we introduce the set of functions

$$
\begin{equation*}
\mathcal{G}=\bigcup_{q<3} \mathcal{G}_{q}, \quad \text { where } \quad \mathcal{G}_{q}=\left\{f: f(x)=a e_{q}^{-\beta x^{2}}, a>0, \beta>0\right\} \tag{23}
\end{equation*}
$$

It follows from relationship (11) that if the q-Fourier transform $F_{q}\left[G_{q}(\beta, x)\right](\xi)$ of a q Gaussian is a q^{\prime}-Gaussian with some $q^{\prime} \in(-\infty, 3)$, then $Y_{q}(\xi)$ must belong to \mathcal{G}. Therefore,
we will study the existence of a solution of functional differential equations (12) and (16) in the set \mathcal{G}.

Theorem 3.8. Let $1 \leqslant q<3$ and $q_{n}, n \in \mathbb{N}_{q}$, be the sequence defined in (8). Then the functional differential equation

$$
\begin{equation*}
2 \sqrt{q_{n}} \frac{\mathrm{~d} Y_{q_{n}}(\xi)}{\mathrm{d} \xi}+\xi Y_{q_{n-2}}\left(\sqrt{q_{n}} \xi\right)=0, \quad \xi \in \mathbb{R} \tag{24}
\end{equation*}
$$

has a unique solution $Y_{q_{n}}(\xi) \in \mathcal{G}$ satisfying the condition

$$
\begin{equation*}
Y_{q_{n}}(0)=C_{q_{n}} . \tag{25}
\end{equation*}
$$

This solution is specifically

$$
\begin{equation*}
Y_{q_{n}}(\xi)=C_{q_{n}} e_{q_{n+1}}^{-\frac{3-q_{n}}{8} \xi^{2}} \tag{26}
\end{equation*}
$$

Proof. Existence. It follows immediately from representation (26) that $Y_{q_{n}}(0)=C_{q_{n}}$. Furthermore,

$$
\begin{align*}
& \frac{\mathrm{d} Y_{q_{n}}(\xi)}{\mathrm{d} \xi}=-\frac{1}{4}\left(3-q_{n}\right) C_{q_{n}} \xi\left(e_{q_{n+1}}^{-\frac{3-q_{n}}{8} \xi^{2}}\right)^{q_{n+1}} \tag{27}\\
& Y_{q_{n-2}}\left(\sqrt{q_{n}} \xi\right)=C_{q_{n-2}} e_{q_{n-1}}^{-q_{n}} \frac{3-q_{n-2}}{8} \xi^{2} \tag{28}
\end{align*}
$$

Due to the equation $\left(e_{q}^{y}\right)^{q}=e_{2-1 / q}^{q y}$ and part (i) of proposition 2.6, expression (27) can be rewritten as

$$
\begin{equation*}
\frac{\mathrm{d} Y_{q_{n}}(\xi)}{\mathrm{d} \xi}=-\frac{1}{4}\left(3-q_{n}\right) C_{q_{n}} \xi e_{q_{n-1}}^{-q_{n} \frac{3-q_{n-2}}{8} \xi^{2}} \tag{29}
\end{equation*}
$$

Substituting (28) and (29) into (24), we obtain

$$
\begin{equation*}
\left(-\sqrt{q_{n}} C_{q_{n}} \frac{3-q_{n}}{2}+C_{q_{n-2}}\right) e_{q_{n-1}}^{-\frac{q_{n}\left(3-q_{n}\right)}{8} \xi^{2}}=0 . \tag{30}
\end{equation*}
$$

Now taking into account part (ii) of proposition 2.6 we conclude that $Y_{q_{n}}(\xi)$ in (26) satisfies (24).

Uniqueness. We note that $\left|\cos _{q}(x)\right| \leqslant 1$ for real x, if $q>1$ (see [6]). This fact and corollary 2.3 imply the following estimate:

$$
\begin{equation*}
\left|Y_{q}(\xi)\right|=\left|\int_{-\infty}^{\infty} e_{q}^{-x^{2}+\mathrm{i} x \xi} \mathrm{~d} x\right| \leqslant \int_{-\infty}^{\infty} e_{q}^{-x^{2}} \mathrm{~d} x=C_{q} \tag{31}
\end{equation*}
$$

Assume that there are two solutions to problem (24)-(25), i.e. $Y_{q_{n}}$ and $\tilde{Y}_{q_{n}}$. Then there difference $Z_{q_{n}}(\xi)=Y_{q_{n}}(\xi)-\tilde{Y}_{q_{n}}(\xi)$ also satisfies equation (24), and the condition $Z_{q_{n}}(0)=0$. Now estimate (31) yields $Z_{q_{n}} \equiv 0$, which, in turn, implies $Y_{q_{n}} \equiv \tilde{Y}_{q_{n}}$.

Corollary 3.9. Let $q_{n} \geqslant 1$. Then

$$
\begin{equation*}
F_{q_{n}}\left[G_{q_{n}}\right](\xi)=e_{q_{n+1}}^{-\frac{3-q_{n}}{8 \beta^{2}-q_{n} C_{q_{n}}^{\left.2 q_{n}-1\right)} \xi^{2}}} . \tag{32}
\end{equation*}
$$

Remark 3.10. Representation (32) was obtained in [6] by the contour integration technique. The formula in (7) corresponds to the particular case $n=0$ of (32).

Remark 3.11. If $q=1$, then the Cauchy problem (24)-(25) reads

$$
2 \frac{\mathrm{~d} Y_{1}(\xi)}{\mathrm{d} \xi}+\xi Y_{1}(\xi)=0, \quad Y_{1}(0)=\sqrt{\pi}
$$

and its unique solution is $Y_{1}(\xi)=\sqrt{\pi} e^{-\xi^{2} / 4}$. Besides corollary 3.9 we obtain

$$
F\left[\frac{\sqrt{\beta}}{\sqrt{\pi}} e^{-\beta x^{2}}\right]=e^{-\frac{1}{4 \beta} \xi^{2}}
$$

The density of the standard normal distribution corresponds to $\beta=1 / 2$, giving the characteristic function of the classic Gaussian.

Theorem 3.12. Let $q_{n}, n \in \mathbb{N}_{q}$, be a sequence defined in (8) with $q<1$. Suppose that $q_{n} \neq m /(m+1), m=1,2 \ldots$ Then the functional differential equation

$$
\begin{equation*}
2 \sqrt{q_{n}} \frac{\mathrm{~d} Y_{q_{n}}(\xi)}{\mathrm{d} \xi}+\xi Y_{q_{n-2}}\left(\sqrt{q_{n}} \xi\right)=r_{q_{n}} \xi^{\frac{1}{1-q_{n}}}, \quad \xi \in \mathbb{R} \tag{33}
\end{equation*}
$$

has no solution in \mathcal{G}.
Proof. We recall that if $q<1$ and $n \in \mathbb{N}_{q}$, then $q_{n}<1$. Further, we note that a function with compact support cannot solve equation (33). Since each function in \mathcal{G}_{q} for $q<1$ has a compact support, the solution of equation (33) cannot belong to $\mathcal{G}_{q}, q<1$. Now assume that $Y_{q_{n}}(\xi) \in \mathcal{G}_{q^{\prime}}$ and $Y_{q_{n-2}}(\xi) \in \mathcal{G}_{q^{\prime \prime}}$, with $q^{\prime}>1$ or $q^{\prime \prime}>1$ (the reader can easily verify that $q^{\prime} \neq 1$ and $q^{\prime \prime} \neq 1$). In accordance with definition (23),

$$
Y_{q_{n}}(\xi)=a e_{q^{\prime}}^{-b \xi^{2}} \quad \text { and } \quad Y_{q_{n-2}}(\xi)=A e_{q^{\prime \prime}}^{-B \xi^{2}}
$$

where a, b, A, B are some real positive numbers depending on q_{n}. Then, for equation (33) to be consistent,

$$
\frac{2}{1-q^{\prime}}-1=\frac{1}{1-q_{n}} \quad \text { or } \quad \frac{2}{1-q^{\prime \prime}}+1=\frac{1}{1-q_{n}}
$$

Solving these equations for q^{\prime} and $q^{\prime \prime}$, one obtains $q^{\prime}=\frac{q_{n}}{2-q_{n}}$ and $q^{\prime \prime}=\frac{3 q_{n}-2}{q_{n}}$. It follows $\max \left(q^{\prime}, q^{\prime \prime}\right)<1$, since $q_{n}<1$. This contradicts the assumption that $q^{\prime}>1$, or $q^{\prime \prime}>1$.

Next, we consider the cases $q=\frac{1}{2}, \frac{2}{3}, \ldots, \frac{m}{m+1}, \ldots$, excluded from theorem 3.12. Direct computations show that in two specific cases, namely $q=1 / 2$ and $q=2 / 3, Y(q, \xi) \in \mathcal{G}_{0}$ considered on the positivity intervals. Indeed,

$$
\begin{equation*}
Y_{\frac{1}{2}}(\xi)=F_{\frac{1}{2}}\left[e_{\frac{1}{2}}^{-x^{2}}\right](\xi)=\frac{16 \sqrt{2}}{15}\left(1-\frac{5}{16} \xi^{2}\right), \tag{34}
\end{equation*}
$$

which is nonnegative for $\xi \in[-4 / \sqrt{5}, 4 / \sqrt{5}]$. Therefore, on this interval we can associate it with an element of \mathcal{G}_{0}, writing $Y(1 / 2, \xi)=\frac{16 \sqrt{2}}{15} e_{0}^{-(5 / 16) \xi^{2}} \in \mathcal{G}_{0}$. Similarly,

$$
\begin{equation*}
Y_{\frac{2}{3}}(\xi)=F_{\frac{2}{3}}\left[e_{\frac{2}{3}}^{-x^{2}}\right](\xi)=\frac{32 \sqrt{3}}{35}\left(1-\frac{7}{24} \xi^{2}\right) \in \mathcal{G}_{0} \tag{35}
\end{equation*}
$$

on the positivity interval $\left(-2 \sqrt{\frac{6}{7}}, 2 \sqrt{\frac{5}{7}}\right)$.
However, $Y(q, \xi)$ does not belong to \mathcal{G} for any other value of $q=3 / 4,4 / 5, \ldots$ In order to show this first we derive an explicit form for $P_{m+1}(\xi)=Y_{m /(m+1)}(\xi)$. Recall that $P_{m+1}(\xi)$ is a polynomial of order $m+1$ if $m+1$ is even. Otherwise, it is a polynomial of order m.

Theorem 3.13. Let $q=m /(m+1), m=1,2, \ldots$ Then $Y_{q}(\xi)=P_{m+1}(\xi)$ has the representation
$P_{m+1}(\xi)=\sum_{k=0}^{\left[\frac{m+1}{2}\right]}(-1)^{k}(m+12 k)(m+1)^{-k+\frac{1}{2}} B\left(k+\frac{1}{2}, m-2 k+2\right) \xi^{2 k}$,
where $[x]$ is the integer part of x, and $B(a, b)$ is Euler's beta-function.
Proof. Recall that if $q=\frac{m}{m+1}$, then $Y_{q}(\xi)$ has the form

$$
Y_{q}(\xi)=P_{m+1}(\xi)=\int_{-\sqrt{m+1}}^{\sqrt{m+1}}\left(1-\frac{1}{m+1} x^{2}+\frac{1}{m+1} \mathrm{i} x \xi\right)^{m+1} \mathrm{~d} x
$$

We have

$$
P_{m+1}(\xi)=\sum_{k=0}^{m+1}(m+1 k) D_{k}(m) \frac{(\mathrm{i} \xi)^{k}}{(m+1)^{k}},
$$

where

$$
D_{k}(m)=\int_{-\sqrt{m+1}}^{\sqrt{m+1}}\left(1-\frac{1}{m+1} x^{2}\right)^{m-k+1} x^{k} \mathrm{~d} x .
$$

It is not hard to verify that $D_{k}(m)=0$ if k is odd and

$$
D_{2 k}(m)=(m+1)^{k+1 / 2} B(k+1 / 2, m-2 k+2)
$$

for $k=0, \ldots,\left[\frac{m+1}{2}\right]$, which implies representation (36).
Theorem 3.14. Let $q=m /(m+1), m=3,4, \ldots$ Then $Y_{q}(\xi) \notin \mathcal{G}$.
Proof. It follows from representation (36) that the polynomial $Y_{q}(\xi)=P_{m+1}(\xi)$, with the first three (nonzero) terms indicated, reads

$$
\begin{align*}
Y_{q}(\xi) & =D_{0}(m)\left[1-(m+1)^{2} \frac{B\left(\frac{3}{2}, m\right)}{B\left(\frac{1}{2}, m+2\right)} \xi^{2}+\frac{m(m+1)^{3}}{2} \frac{B\left(\frac{5}{2}, m-2\right)}{B\left(\frac{1}{2}, m+2\right)} \xi^{4}+\cdots\right] \\
& =D_{0}(m)\left[1-\frac{2 m+3}{8(m+1)} \xi^{2}+\frac{(2 m+3)(2 m+1)}{8(m+1)^{2}} \xi^{4}+\cdots\right], \tag{37}
\end{align*}
$$

where

$$
D_{0}(m)=C_{\frac{m}{m+1}}=\sqrt{m+1} B\left(\frac{1}{2}, m+2\right)=\frac{\sqrt{m+1}(m+1)!2^{m+2}}{(2 m+3)!!}
$$

Now assume that $Y_{q}(\xi) \in \mathcal{G}_{q^{\prime}}$ for some $q^{\prime}<3$. Then $1 /\left(1-q^{\prime}\right)=(m+1) / 2$, or $q^{\prime}=(m-1) /(m+1)$. Therefore,

$$
Y_{q}(\xi)=D_{0}(m)\left[1-\beta(m) \xi^{2}\right]^{\left[\frac{m+1}{2}\right]}
$$

where $\beta(m)>0$ and $|\xi| \leqslant 1 / \sqrt{\beta(m)}$. Applying the binomial formula and indicating the first three terms, one has

$$
\begin{equation*}
Y_{q}(\xi)=D_{0}(m)\left[1-\frac{(m+1) \beta(m)}{2} \xi^{2}+\frac{\left(m^{2}-1\right)[\beta(m)]^{2}}{8} \xi^{4}+\cdots\right] \tag{38}
\end{equation*}
$$

Comparing the second and third terms in (37) and (38), one obtains contradictory relations

$$
\beta(m)=\frac{2 m+3}{4(m+1)^{2}}
$$

and
$[\beta(m)]^{2}=\frac{(3 m+3)(2 m+1)}{(m-1)(m+1)^{3}} \neq \frac{(2 m+3)^{2}}{16(m+1)^{4}}=[\beta(m)]^{2}, \quad m=3,4, \ldots$,
which completes the proof.
Remark 3.15. Formula (36) for $q=1 / 2$ and $q=2 / 3$ gives
$Y_{\frac{1}{2}}(\xi)=\frac{16 \sqrt{2}}{15}\left(1-\frac{5}{16} \xi^{2}\right)=\frac{16 \sqrt{2}}{15} e_{0}^{-(5 / 16) \xi^{2}}, \quad \xi \in\left[-\frac{4 \sqrt{5}}{5}, \frac{4 \sqrt{5}}{5}\right]$,
and

$$
Y_{\frac{2}{3}}(\xi)=\frac{32 \sqrt{3}}{35}\left(1-\frac{7}{24} \xi^{2}\right)=\frac{32 \sqrt{3}}{35} e_{0}^{-\frac{7}{24} \xi^{2}}, \quad \xi \in\left[-2 \sqrt{\frac{7}{6}}, 2 \sqrt{\frac{7}{6}}\right]
$$

which coincide with (34) and (35), respectively. Both functions belong to \mathcal{G}_{0}.
Theorem 3.16. Let $q<0$. Then $Y_{q}(\xi) \notin \mathcal{G}$.
Proof. Repeating calculations used in proofs of theorems 3.2 and 3.3, it is not hard to verify that the derivative of $Y_{q}(\xi)$ can be represented in the form

$$
\begin{equation*}
\frac{\mathrm{d} Y_{q}(\xi)}{\mathrm{d} \xi}=-\frac{\xi}{2} \int_{-K}^{K}\left(e_{q}^{-x^{2}+\mathrm{i} x \xi}\right)^{q} \mathrm{~d} x+R_{q} \xi^{\frac{1}{1-q}} \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{q}=(1-q)^{\frac{1}{2(1-q)}} \sin \frac{\pi}{2(1-q)} \tag{40}
\end{equation*}
$$

We note that the condition $q<0$ implies two statements important for further proof, namely $0<\frac{1}{1-q}<1$, and $R_{q} \neq 0$. Now assume that $Y_{q} \in \mathcal{G}_{q^{\prime}}$ with some $q^{\prime} \in(-\infty, 3)$. In other words, there are positive numbers a and b, such that $Y_{q}(\xi)=a e_{q^{\prime}}^{-b \xi^{2}}$. Taking the first derivative of the latter, equating it to the right-hand side of (39), and dividing both sides by $\xi^{\frac{1}{1-q}}(\xi \neq 0)$, we obtain

$$
\begin{equation*}
\xi^{-\frac{q}{1-q}}\left[\frac{1}{2} \int_{-K}^{K}\left(e_{q}^{-x^{2}+i x \xi}\right)^{q} \mathrm{~d} x-2 a b\left(e_{q^{\prime}}^{-b \xi^{2}}\right)^{q^{\prime}}\right]=R_{q} \tag{41}
\end{equation*}
$$

which must be valid for all $\xi \in \mathbb{R}$. However, the left-hand side becomes arbitrarily small for small ξ, since $-\frac{q}{1-q}>0$ and the expression in brackets has a finite limit at 0 , while the right-hand side is nonzero constant. This contradiction completes the proof.

4. Some applications to the porous medium equation

In this section we discuss some applications of the q-Fourier transform F_{q} to nonlinear models of partial differential equations. First we verify that the theorems proved in section 3 imply that F_{q} transfers a q-Gaussian into a q_{1}-Gaussian if $q \geqslant 1, q_{1}=(1+q) /(3-q)$. Moreover, as shown in [11], the operator $F_{q}: G_{q} \rightarrow G_{q_{1}}$ for $q>1$ is invertible. These two facts have been essentially used in $[6,10]$ for the proof of q-versions of the central limit theorem. Another application of F_{q}, as sketched hereunder, shows that it can be used for establishing a relation between the porous medium equation and a nonlinear ordinary differential equation (ODE) similar to the usual Fourier transform.

The classic Fourier transform reduces the Cauchy problem for linear partial differential equations of the form $u_{t}(t, x)=A\left(D_{x}\right) u(t, x) t>0, x \in R^{n}, u(0, x)=\varphi(x), x \in R^{n}$, where
$D_{x}=\left(D_{1}, \ldots, D_{n}\right), D_{j}=-\mathrm{i} \frac{\partial}{\partial x_{j}}, j=1, \ldots, n$, and $A\left(D_{x}\right)$ is an elliptic differential operator, to an associated linear ODE with the parameter $\xi \in R^{n}$. In the particular case of $n=1$ and $A\left(D_{x}\right)=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}$ for the Fourier image $\hat{u}(t, \xi)$ of a solution $u(t, x)$, we have a dual differential equation

$$
\begin{equation*}
\hat{u}_{t}^{\prime}(t, \xi)=-\xi^{2} \hat{u}(t, x), \quad \hat{u}(0, \xi)=\hat{\varphi}(\xi) \tag{42}
\end{equation*}
$$

where $\xi \in R^{1}$ is a parameter. This instance corresponds to the Fokker-Planck equation without drift [15] for some classes of nonlinear differential equations.

We now demonstrate the similar role of F_{q} in the celebrated porous medium equation in the superdiffusion regime ubiquitously found in physical phenomena [17-21] (and references therein $)^{4}$. Consider the following nonlinear diffusion equation with a singular diffusion coefficient:

$$
\begin{equation*}
\frac{\partial U}{\partial t}=\left(U^{1-q} U_{x}\right)_{x}, \quad t>0, \quad x \in R^{1}, \quad q>1 \tag{43}
\end{equation*}
$$

We look for a solution in the similarity set $G_{q}^{*}=\left\{U(t, x): U(t, x)=t^{a} G_{q}\left(\beta ; t^{b} x\right), a=\right.$ $\left.a(q), b=b(q) \in R^{1}, \beta=\beta(q)>0\right\}$, where a and β do not depend on t and x.

Proposition 4.1. Suppose $U(t, x) \in G_{q}^{*}$ is a solution to equation (43). Then its q-Fourier transform $\hat{U}_{q}(t, \xi)=F_{q}[U(t, x)](\xi)$ satisfies the following nonlinear ordinary differential equation with the parameter ξ :

$$
\begin{equation*}
\left(\hat{U}_{q}\right)_{t}^{\prime}=-\frac{B(\beta, q) \xi^{2}}{t^{\frac{q-1}{3-q}}}\left(\hat{U}_{q}\right)^{q_{1}}, \quad t>0 \tag{44}
\end{equation*}
$$

where $B(\beta, q)=\frac{2-q}{4 \beta^{2-q} C_{q}^{q-1}}$ and $q_{1}=\frac{1+q}{3-q}$.
Proof. Let $U \in G_{q}^{*}$ be a solution to (43), i.e. for some $a=a(q)$ and $\beta=\beta(q)$ it has the representation $U(t, x)=t^{a} G_{q}\left(\beta ; t^{a} x\right)$. Then it follows from proposition 2.1 that

$$
\begin{aligned}
\hat{U}_{q}(t, \xi) & =F_{q}[U(t, x)](\xi) \\
& =F_{q}\left[G_{q}(\beta ; x)\right]\left(\frac{\xi}{t^{a(2-q)}}\right)=\frac{1}{C_{q}} Y_{q}\left(\left(\frac{\sqrt{\beta}}{C_{q}}\right)^{q-1} \frac{\xi}{\sqrt{\beta} t^{a(2-q)}}\right)
\end{aligned}
$$

where $Y_{q}(\xi)$ is a solution to equation (24). Computing the derivative of $\hat{U}_{q}(t, x)$ in variable t, taking into account that $a=-1 /(3-q)$ (see, e.g., [21]), and using equation (24), we obtain

$$
\left(\hat{U}_{q}\right)_{t}=-\frac{2-q}{4 \beta^{2-q} C_{q}^{2(q-1)}} \xi^{2}\left(\hat{U}_{q}\right)^{q_{1}}
$$

where $q_{1}=(1+q) /(3-q)$.
The inverse statement, given in the following formulation, is also true.
Proposition 4.2. Suppose $V(t, \xi), V(0, \xi)=1$, is a solution to $O D E$ with the parameter ξ

$$
\begin{equation*}
V^{\prime}=-\frac{B(\beta, q) \xi^{2}}{t^{\frac{q-1}{3-q}}} V^{q_{1}}, \quad t>0 \tag{45}
\end{equation*}
$$

where $B(q, \beta)$ and q_{1} are as in proposition 4.1. Then its inverse q-Fourier transform $U(t, x)=F_{q}^{-1}[V(t, \xi)](x)$ exists and satisfies equation (43).

4 The monograph [21] contains different approaches to the solution of the porous medium equation.

Proof. By separation of variables of (45) one can verify that its solution

$$
V(t, \xi)=e_{q_{1}}^{-\frac{3-q}{8 \beta^{2-q} C_{q}^{g-1}}\left(\xi t^{\frac{2-q}{3-q}}\right)}
$$

By theorem 0.6 of paper [11] the inverse q-Fourier transform for $V(t, \xi)$ exists, and by virtue of propositions 2.1 and 2.4 it has the representation
$U(t, x)=\frac{1}{t^{\frac{1}{3-q}}} G_{q}\left(\beta(q) ; \frac{x}{t^{\frac{1}{3-q}}}\right), \quad$ where $\quad \beta(q)=\frac{1}{\left[2(3-q) C_{q}^{\frac{1}{q-1}}\right]^{\frac{2}{3-q}}}$.
The latter is a solution to equation (43); see [21].
Note that if the initial condition is given in the form $U(0, x)=\delta(x)$ with the Dirac delta function, and $q=1$, then we obtain $(42)(\hat{\varphi}(\xi) \equiv 1)$, in which $\beta=1 / 4, B(\beta, 1)=4 \beta=1$.

In order to study price fluctuations in stock markets a stochastic process $X_{t}=\frac{\ln S\left(t+t_{0}\right)}{\ln S\left(t_{0}\right)}$ representing log-returns was introduced in [16]. Here $S(t)$ is the price at time $t . X_{t}$ solves a stochastic differential equation $\mathrm{d} X_{t}=\tau \mathrm{d} t+\sigma \mathrm{d} \Omega_{t}$, where τ and σ are the drift and volatility coefficients respectively, and Ω_{t} is a solution to the Îto stochastic differential equation

$$
\begin{equation*}
\mathrm{d} \Omega_{t}=\left[P\left(\Omega_{t}\right)\right]^{\frac{1-q}{2}} \mathrm{~d} B_{t}, \quad t>t_{0} . \tag{47}
\end{equation*}
$$

In this equation B_{t} is a Brownian motion, and P is a q-Gaussian distribution function. The corresponding Fokker-Planck-type equation in the case $\tau=0, \sigma=1$ reads

$$
\begin{equation*}
\frac{\partial V\left(x, t \mid x^{\prime}, t^{\prime}\right)}{\partial t}=\left(\left[V\left(x, t \mid x^{\prime}, t^{\prime}\right)\right]^{2-q}\right)_{x x} \tag{48}
\end{equation*}
$$

which can easily be reduced to the form (43). From the financial applications point of view it is important to know the properties of the stochastic process X_{t}, since it can be considered as a q-alternative to the Brownian motion. One can effortlessly verify that if $U(t, x)$ is a solution to equation (43) for $t>0$ with an initial condition $U(0, x)=f(x)$, then a solution $V(t, x), t>t^{\prime}$, to the same equation (43) considered for $t>t^{\prime}$ with an initial condition $V\left(t^{\prime}, x\right)=f(x)$ can be represented in the form $V(t, x)=U\left(t-t^{\prime}, x\right), t>t^{\prime}$. It follows that X_{t} has stationary increments.

Concluding the discussion we note that solution (46) corresponds to the solution obtained from an ansatz [20] which is in accordance with the generalized central limit theorem presented in [6]. The method we have just presented for the model case can be implemented for other more general cases as well. For instance, the Fokker-Planck-type equation associated with a process X_{t} with constant drift $\tau=\mu \neq 0$, due to a term $-2 \mathrm{i} \mu \sqrt{q_{n}} Y_{\mu, q_{n}}(\xi)$ in equation (22), has an additional drift term on the right-hand side of equation (48). We also note that with more routine calculations the method can be extended to the case of time-dependent drift and diffusion coefficients. We intend to present all the routine calculations in the general case of linear external forces in a separate paper.

5. Conclusion

Summarizing, we have the following general picture for the q-Fourier transform of q Gaussians.
(1) The case $1 \leqslant q<3$:
(1a) the q-Fourier transform acts as $F_{q}: \mathcal{G}_{q} \rightarrow \mathcal{G}_{q^{\prime}}$;
(1b) the relation between q and q^{\prime} is given by $q^{\prime}=\frac{1+q}{3-q}$.
(2) The case $q=\frac{1}{2}$ or $q=\frac{2}{3}$: in this case the operator acts as $F_{q}: \mathcal{G}_{q} \rightarrow \mathcal{G}_{0}$. Relationship (1b) is failed.
(3) The case $q<1$, but $q \neq \frac{1}{2}, \frac{2}{3}$: in this case (1a) is failed, in the sense that there is no q^{\prime} such that the q-Fourier transform of a q-Gaussian would be a q^{\prime}-Gaussian.

The lesson we have learnt from the above analysis is that the q-Fourier transform defined by formula (1) (or, the same, by formula (3)) is rich in content and applications if $q \in[1,3$). Its important applications in the case $q>1$ are given in [6] for the proof of the q-central limit theorem, and in [9] for the classification of (q, α)-stable distributions. Another application of the operator F_{q} to the porous medium equation and related stochastic differential models is discussed in section 4 of the current paper. What concerns the case $q<1$, the q-Fourier transform defined by formula (1) does not possess the properties valid in the case $1 \leqslant q<3$. Therefore, the methods developed for $q \geqslant 1$ are not applicable in the case $q<1$. The study of applications of the q-Fourier transform (or its alternatively defined version) to problems mentioned above, including the q-central limit theorem, remains a challenging open question in the case $q<1$.

Acknowledgments

We acknowledge C Tsallis for several comments on the subjects mentioned in this paper. We also acknowledge thoughtful remarks by anonymous referees which significantly improved the text.

References

[1] Tsallis C 1988 J. Stat. Phys. 52479
Curado E M F and Tsallis C 1991 J. Phys. A: Math. Gen. 24 L69
Curado E M F and Tsallis C 1991243187 (corrigendum)
Curado E M F and Tsallis C 1992251019 (corrigendum)
[2] Tsallis C 2009 Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Berlin: Springer)
[3] Gell-Mann M and Tsallis C 2004 Nonextensive Entropy—Interdisciplinary Applications (New York: Oxford University Press)
[4] Abe S and Okamoto Y (eds) 2001 Nonextensive Statistical Mechanics and Its Applications (Lecture Notes in Physics vol 560) (Heidelberg: Springer)
[5] Tsallis C, Mendes R S and Plastino A R 1998 Physica A 261534
Kaniadakis G, Lissia M and Rapisarda A (eds) 2002 Non-extensive Thermodynamics and Physical Applications (Physica A vol 305) (Amsterdam: Elsevier)
Swinney H L and Tsallis C (eds) 2004 Anomalous Distributions, Nonlinear Dynamics and Nonextensivity (Physica D vol 193) (Amsterdam: Elsevier)
Abe S, Herrmann H J, Quarati P, Rapisarda A and Tsallis C (eds) 2007 Complexity, Metastability and Nonextensivity (AIP Conf. Proc. vol 965) (New York: American Institute of Physics)
[6] Umarov S, Tsallis C and Steinberg S 2008 Milan J. Math. 76307
[7] Tsallis C 2005 Milan J. Math. 73145
[8] Moyano L G, Tsallis C and Gell-Mann M 2006 Europhys. Lett. 73813
[9] Umarov S, Tsallis C, Gell-Mann M and Steinberg S 2010 J. Math. Phys. (at press)
Umarov S, Tsallis C, Gell-Mann M and Steinberg S $2006 q$-generalization of symmetric alpha-stable distributions: Part I arXiv:cond-mat/06006038
[10] Umarov S and Tsallis C 2007 On multivariate generalizations of the q-central limit theorem consistent with nonextensive statistical mechanics Complexity, Metastability and Nonextensivity (AIP Conf. Proc. vol 965) ed S Abe, H J Herrmann, P Quarati, A Rapisarda and C Tsallis (New York: American Institute of Physics)
[11] Umarov S and Tsallis C 2008 Phys. Lett. A 37229
Umarov S, Tsallis C, Gell-Mann M and Steinberg S $2006 q$-generalization of symmetric alpha-stable distributions: Part II arXiv:cond-mat/06006040
[12] Nivanen L, Le Mehaute A and Wang Q A 2003 Rep. Math. Phys. 52437
[13] Borges E P 2004 Physica A 34095
[14] Borges E P 1998 J. Phys. A: Math. Gen. 31 5281-8
[15] Risken H 1989 The Fokker-Planck Equation-Methods of Solution and Applications 2nd edn (Berlin: Springer)
[16] Borland L 2002 Phys. Rev. Lett. 89098701
[17] Carrillo J A and Toscani G 2000 Indiana Univ. Math. J. 49113
[18] Otto F 2001 Commun. Part. Differ. Equ. 26101
[19] Muskat M 1937 The Flow of Homogeneous Fluids Through Porous Media (New York: McGraw-Hill)
[20] Tsallis C and Bukman D J 1996 Phys. Rev. E 54 R2197
[21] Vázquez J L 2007 The Porous Medium Equation: Mathematical Theory (Oxford Mathematical Monographs) (New York: Oxford University Press)

[^0]: ${ }^{3} P_{\ell}$ does not contain odd-order terms.

