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Abstract
In this paper the question ‘is the q-Fourier transform of a q-Gaussian a q ′-
Gaussian (with some q ′) up to a constant factor?’ is studied for the whole
range of q ∈ (−∞, 3). This question is connected with applicability of the
q-Fourier transform in the study of limit processes in nonextensive statistical
mechanics. Using the functional differential equation approach we prove that
the answer is affirmative if and only if 1 � q < 3, excluding two particular
cases of q < 1, namely q = 1

2 and q = 2
3 . Complementarily, we discuss

some applications of the q-Fourier transform to nonlinear partial differential
equations such as the porous medium equation.

PACS numbers: 02.30.Sa, 02.30.Uu, 89.65.Gh, 89.75.Da
Mathematics Subject Classification: 35Q84, 37A50, 43A32, 65L03

1. Introduction

Approximately a century after Boltzmann’s seminal works which have turned into the
cornerstones of statistical mechanics, Tsallis [1] introduced an entropic form aimed to
accommodate the description of systems whose fundamental features may not be fitted in
the Boltzmann–Gibbs formalism (see details in [2–4]). Tsallis’ entropic form, which is
usually called the non-additive q-entropy, recovers the classic Boltzmann–Gibbs entropic form,
S(f ) = − ∫

f (x)lnf (x) dx in the limit case q → 1. Concomitantly, there is the nonextensive
statistical mechanics formalism based on q-algebra and the q-Gaussian probability density
function, which maximizes q-entropy under certain appropriate constraints (see [1, 5] and
references therein). Recently, the q-Fourier transform [6] was introduced as a tool for the
study of attractors of strongly correlated random variables in conjunction with the q-central
limit theorem. The existence of such a theorem within nonextensive statistical mechanics was
first conjectured in [7, 8]. In this paper we shed light on the question—whether the q-Fourier
transform of a q-Gaussian is a q ′-Gaussian, clarifying thereupon applicability of the q-Fourier

1751-8113/10/095202+15$30.00 © 2010 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/43/9/095202
mailto:sdqueiro@gmail.com
http://stacks.iop.org/JPhysA/43/095202


J. Phys. A: Math. Theor. 43 (2010) 095202 S Umarov and S M Duarte Queirós

transform technique as a mathematical tool. A key to this matter is crucial because the q-
Fourier transform is relevant to the study of limit distributions of strongly correlated random
variables, as well as to solutions of partial differential equations with physical significance.
Moreover, a positive answer implies validating a mapping relation of q onto q ′ obtained from
the q-Fourier transform. This relation has been predominant for the establishment of other
stable distributions, namely the (q, α)-stable distributions [9]. We recall that, by definition,
the q-Fourier transform of a nonnegative f ∈ L1(R) is defined by the formula

Fq[f ](ξ) =
∫

supp f

eixξ
q ⊗q f (x) dx, ξ ∈ (−∞,∞), (1)

where q < 3, the symbol ⊗q stands for the q-product and

ez
q = (1 + (1 − q)z)1/(1−q), z ∈ C, (2)

is a q-exponential, which is the usual exponential function ez in the limit q → 1, and defined
for all z ∈ C\z0, z0 = −1/(1 − q), with principal values along the cut (−∞, z0) if q �= 1
(see [6, 7] for details). The equality

eixξ
q ⊗q f (x) = f (x)e

ixξ

[f (x)]1−q

q ,

valid for all x ∈ supp f implies the following representation for the q-Fourier transform
without usage of the q-product:

Fq[f ](ξ) =
∫

supp f

f (x)eixξ [f (x)]q−1

q dx. (3)

The paper is organized as follows: in section 2 we mention some properties of the q-
Fourier transform. In section 3 we derive functional differential equations for the q-Fourier
transform of q-Gaussians. Then, based on the results of this section, we show that the answer
to the above question is affirmative for all 1 � q < 3, and for two particular values of q < 1,
namely for q = 1/2 and q = 2/3. We also show that if q < 1, except two values mentioned
above, the q-Fourier transform of a q -Gaussian is no longer a q ′-Gaussian, ∀q ′ < 3. A relevant
physical application of the q-Fourier transform and the functional differential equations studied
in section 3 is addressed in section 4.

2. Preliminaries

Representation (3) for the q-Fourier transform implies the following proposition.

Proposition 2.1. For any constants a > 0, b �= 0,

(i) Fq[af (x)](ξ) = aFq[f (x)]
(

ξ

a1−q

);
(ii) Fq[f (bx)](ξ) = 1

b
Fq[f (x)]

(
ξ

b

)
.

Let β be a positive number. By definition, the function

Gq(β; x) =
√

β

Cq

e−βx2

q , (4)

with domains given below, is called a q-Gaussian density function:

(i) if q < 1, then Gq(β; x) is defined on the compact set [−Kβ,Kβ], where Kβ =
(β(1 − q))−1/2;

(ii) if 1 � q < 3, then Gq(β; x) is defined on the whole real axis R = (−∞,∞).
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In expression (4) Cq is the normalizing constant, i.e. Cq = ∫ ∞
−∞ e−x2

q dx, whose explicit form
is given by (see, e.g., [6])

Cq =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√

π �
(

1
1−q

)
(3 − q)

√
1 − q �

( 3−q

2(1−q)

) , −∞ < q < 1,

√
π, q = 1,

√
π �

( 3−q

2(q−1)

)
√

q − 1 �
(

1
q−1

) , 1 < q < 3.

(5)

We use the convention Kβ = ∞ if q � 1, since, by definition, the support of the q-Gaussian
is not bounded in this case.

Note that q-exponentials possess the property ez
q ⊗q ew

q = ez+w
q [12, 13]. This immediately

implies the following assertion.

Proposition 2.2. For all q < 3 the q-Fourier transform of e
−βx2

q , β > 0, can be written in
the form

Fq

[
e−βx2

q

]
(ξ) =

∫ Kβ

−Kβ

e−βx2+ixξ
q dx. (6)

Corollary 2.3. Let q < 3. Then

Fq

[
e−βx2

q

]
(ξ) = 2

∫ Kβ

0
e−βx2

q cosq

(
xξ

[e−βx2

q ]1−q

)
dx, ∀ q,

where

cosq(x) = eix
q + e−ix

q

2
.

The assertion below was proved in [6].

Proposition 2.4. Let 1 � q < 3. Then

Fq[Gq(β; x)](ξ) = e−β∗ξ 2

q1
, ξ ∈ R, (7)

where q1 = 1+q

3−q
and β∗ = 3−q

8β2−qC
2(q−1)
q

.

Proposition 2.5. Let q < 1. Then

Fq[Gq(β, x)](ξ) = e−β∗ξ 2

q1

(
1 − 2

Cq

Im
∫ dξ

0
e
bξ +iτ
q dτ

)
, ξ ∈

(
−K 1

4β

, K 1
4β

)
,

where q1 and β∗ are as in proposition 2.4 and bξ + idξ = Kβ

√
β−i ξ

2
√

β[
e
− ξ2

4β
q

] 1−q
2

.

Proof. The proof of this statement can be obtained applying the Cauchy theorem, that is

by integrating the function e
−βz2+izξ
q over the closed contour C = C0 ∪ C1 ∪ C− ∪ C+, where

Cp = (−Kβ + pi,Kβ + ip), p = 0, 1, and C± = [±Kβ,±Kβ + i]. �

Unifying propositions 2.4 and 2.5,

Fq[Gq(β, x)](ξ) = e−β∗ξ 2

q1
+ I(−∞,0)(q)Tq(ξ),

3
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where I(a,b)(·) designates the indicator function of an interval (a, b), and

Tq(ξ) = − 2

Cq

e−β∗ξ 2

q1
Im

∫ dξ

0
e
bξ +iτ
q dτ.

Thus, for q � 1, the operator Fq transforms a q-Gaussian into a q1-Gaussian with the factor
Cq1β

−1/2. However, for q < 1 the additional tail Tq(ξ) appears.
Further, introduce a sequence qn defined as

qn = 2q − n(q − 1)

2 − n(q − 1)
, (8)

where −∞ < n < 2
q−1 − 1 if 1 < q < 3, and n > − 2

1−q
if q < 1. Obviously, q0 = q. Note

also that if q = 1, then qn = 1 for all n = 0,±1, . . . . Let Z be the set of all integer numbers.
Denote by Nq a subset of Z defined as

Nq =

⎧⎪⎨
⎪⎩

{
n ∈ Z : n < 2

q−1 − 1
}
, if 1 < q < 3,

Z, if q = 1,{
n ∈ Z : n > − 2

1−q

}
, if q < 1.

Proposition 2.6. For all n ∈ Nq the following relations hold:

(i) (3 − qn)qn+1 = (3 − qn−2)qn,

(ii) 2Cqn−2 = √
qn (3 − qn) Cqn

.

Proof.

(i) It follows from the definition of qn that qn+1 = (1 + qn)/(3 − qn). This yields

(3 − qn)qn+1 = 1 + qn =
(

1 +
1

qn

)
qn. (9)

Further, it is easy to verify that the equality qk−1 +q−1
k+1 = 2 holds for all k ∈ Nq . Applying

this relationship for k = n − 1, we have 1/qn = 2 − qn−2. Now taking this into account
in (9), we obtain (i).

(ii) Obviously, for q = 1 relationship (ii) reads 2
√

π = 2
√

π. Let q �= 1. Note that for
any n ∈ Nq the condition 1 < q < 3 implies 1 < qn < 3, as well as the condition
q < 1 implies qn < 1. Using the explicit forms for Cq given in (5) and the relationship
2 − qn−2 = 1/qn, one obtains in the case 1 < q < 3

2Cn−2

Cn

=
√

qn�
( 1+qn

2(qn−1)

)
1

2(qn−1)
�

( 3−qn

2(qn−1)

) = √
qn(3 − qn);

and in the case q < 1

2Cn−2

Cn

=
√

qn(3 − qn)
1+qn

2(1−qn)

�
( 3−qn

2(1−qn)

)
�

( 1+qn

2(1−qn)

) = √
qn(3 − qn),

completing the proof of part (ii). �

4



J. Phys. A: Math. Theor. 43 (2010) 095202 S Umarov and S M Duarte Queirós

3. Main results

3.1. Functional differential equations

Let gq(β, ξ) be the q-Fourier transform of a q-Gaussian Gq(β, ξ), i.e. gq(β, ξ) =
Fq[Gq(β, x)](ξ), and gq(ξ) = gq(1, ξ) for β = 1. Further, let Yq(ξ) = Fq

[
e−x2

q

]
(ξ). In

accordance with proposition 2.2,

Yq(ξ) =
∫ K

−K

e−x2+ixξ
q dx, ξ ∈ R, (10)

where K = K1 = 1√
1−q

if q < 1, and K = ∞, if q � 1.

Lemma 3.1. For any q < 3 and β > 0 we have

(i) gq(β, ξ) = gq

(
ξ

(
√

β)2−q

);
(ii) gq(ξ) = 1

Cq
Yq

(
C

1−q
q ξ

)
.

Proof. The proof straightforwardly follows from the properties of the operator Fq indicated
in proposition 2.1. �

These two formulas yield

Fq[Gq(β, x)](ξ) = 1

Cq

Yq

((
Cq√

β

)1−q
ξ√
β

)
. (11)

Moreover, gq(β, 0) = 1, which implies gq(0) = 1 and Yq(0) = Cq. Thus, in order to know
the properties of the q-Fourier transform of q-Gaussians it suffices to study Yq(ξ).

Theorem 3.2. Let 1 � q < 3 and qn, n ∈ Nq, are defined in equation (8). Then Yqn
(ξ)

satisfies the following homogeneous functional differential equation:

2
√

q
n

dYqn
(ξ)

dξ
+ ξYq

n−2
(
√

q
n
ξ) = 0, ξ ∈ R. (12)

Proof. Differentiating Yq(ξ) = ∫ K

−K
e
−x2+ixξ
q dx with respect to ξ , we have

dYq(ξ)

dξ
= i

∫ K

−K

x
(
e−x2+ixξ
q

)q
dx.

Further, integrating by parts,

dYq(ξ)

dξ
= −i

2

∫ K

−K

d
(
e−x2+ixξ
q

) − ξ

2

∫ K

−K

(
e−x2+ixξ
q

)q
dx. (13)

Obviously, the first integral vanishes if q � 1. Further, using
(
e
y
q

)q = e
qy

2−1/q , which is valid
for any q < 3 (see [6]), the second integral can be represented in the form∫ K

−K

(
e−x2+ixξ
q

)q
dx = 1√

q

∫ K

−K

e
−x2+ix

√
qξ

2−1/q dx = 1√
q

Y2−1/q
(
√

qξ). (14)

Hence, for q � 1 the function Fq

[
e−x2

q

]
(ξ) satisfies the functional differential equation

2
√

q
dYq(ξ)

dξ
+ ξY2−1/q

(
√

qξ) = 0. (15)

Setting q = qn, n ∈ Nq, and taking into account the relation 2 − 1/qn = qn−2, we obtain
equation (12). �

5
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Theorem 3.3. Let 0 < q < 1 and q �= l/(l + 1), l = 1, 2, . . . . Then Yqn
(ξ) satisfies the

following inhomogeneous functional differential equation:

2
√

qn

dYqn
(ξ)

dξ
+ ξYq

n−2
(
√

qnξ) = rqn
ξ

1
1−qn , ξ ∈ R, (16)

where

rqn
= 2

√
qn sin

π

2(1 − qn)
(1 − qn)

1
2(1−qn) . (17)

Proof. Assume that 0 < q < 1 and q �= l
l+1 , l = 1, 2, . . . . In this case the first integral on

the right-hand side of (13) does not vanish, and takes the form∫ K

−K

d
(
e−x2+ixξ
q

) = e−K2+iKξ
q − e−K2−iKξ

q = 2i Im e−K2+iKξ
q .

Since supp e−x2

q = [−K,K], one has e−K2

q = 0. Hence,

e−K2+iKξ
q = 0 ⊗q eiKξ

q = [i(1 − q)Kξ ]
1

1−q .

Further, taking into account that K = 1/
√

1 − q, one obtains

Im[i(1 − q)Kξ ]
1

1−q = (1 − q)
1

2(1−q) sin
π

2(1 − q)
ξ

1
1−q .

Note that the second integral on the right-hand side of equation (13) is the same as in the case
of 1 < q < 3. Consequently, Fq

[
e−x2

q

]
(ξ) satisfies the functional differential equation

2
√

q
dYq(ξ)

∂ξ
+ ξY2−1/q

(
√

qξ) = rqξ
1

1−q , (18)

where

rq = 2
√

q(1 − q)
1

2(1−q) sin
π

2(1 − q)
.

Again, setting q = qn, n ∈ Nq, we arrive at the functional differential equation (16). �

Remark 3.4.

(i) If q = 0, then it is readily seen that Y0(ξ) = F0
[
e−x2

0

]
(ξ) = ∫ 1

−1(1 − x2 + ixξ) dx = 4/3
for all ξ ∈ R. Obviously, such Y0(ξ) cannot be a q ′-Gaussian for any q ′.

(ii) We will show later that a q-Fourier image of any q-Gaussian with q < 0 cannot be a

function of the form ae
−βξ 2

q ′ , for any q ′ ∈ (−∞, 3) (see theorem 3.16).

Let us now consider the cases q = 	/(	 + 1), 	 = 1, 2, . . . , excluded from theorem 3.3.
For these values of q we have K = √

	 + 1 and

Yq(ξ) = Fq

[
e−x2

q

]
(ξ) =

∫ √
	+1

−√
	+1

(
1 − 1

	 + 1
x2 +

1

	 + 1
ixξ

)	+1

dx.

The latter is a polynomial of order 	 if 	 is even, and of order 	+1 if 	 is odd3. In order to reflect
this fact we use the conventional notation P	+1(ξ) = Y	/(	+1)(ξ) indicating the dependence on
	. Further, obviously 2 − 1

q
= 	−1

	
. Consequently,

Y2−1/q(ξ) =
∫ √

	

−√
	

(
1 − 1

	
x2 +

1

	
ixξ

)	

dx = P	(ξ),

3 P	 does not contain odd-order terms.
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and we note that P	(ξ) is a polynomial of order 	 if 	 is even, and of order 	 − 1 if 	 is odd.
Moreover, P	(ξ) is a symmetric function of ξ and P	(0) = C	−1

	
> 0. Let ρ be a root of P	(ξ)

closest to the origin. We will consider P	(ξ) only on its positivity interval (−ρ, ρ).

Theorem 3.5. Let q = 2m−1
2m

, m = 1, 2, . . . . Then Yq(ξ) satisfies equation (12).

Proof. Assume 	 + 1 = 2m,m = 1, 2, . . . . In this case Yq(ξ) = P2m(ξ) is a polynomial of
order 2m and Y2−1/q(ξ) = P2m−1(ξ) is a polynomial of order 2m − 2. Moreover, it is easy to
check rq = 0. Thus, Yq(ξ) satisfies the consistent equation

2
√

q
dYq(ξ)

dξ
+ ξY2−1/q

(
√

qξ) = 0, ξ ∈ R. (19)

�

Theorem 3.6. Let q = 2m
2m+1 ,m = 1, 2, . . . . Then Yq(ξ) satisfies neither equation (12) nor

(16).

Proof. Let 	 = 2m,m = 1, 2, . . . . Then Yq(ξ) = P2m+1(ξ) is a polynomial of order 2m, and
so is Y2−1/q(ξ) = P2m(ξ). Assume that Yq(ξ) satisfies equation (12), which in this particular
case takes the form

2
√

q
dYq(ξ)

dξ
+ ξP2m(ξ) = 0. (20)

Equation (20) is clearly inconsistent, since the derivative of a polynomial of order 2m cannot
be a polynomial of order 2m + 1. Analogously, Yq(ξ) cannot satisfy equation (16) either.
Indeed, if Yq(ξ) solves equation (16), then in this particular case the equation would read

2
√

q
dYq(ξ)

dξ
+ ξP2m(ξ) = (−1)m

(2m − 1)m− 1
2

ξ 2m+1. (21)

Equation (21) is inconsistent, since the term of the highest order on the left-hand side is
2(−1)m

(2m+1)(2m)m−1/2 ξ
2m+1, which is clearly distinct from the term of the highest order on the right-

hand side. �

Remark 3.7. Equations (12) and (16) can be easily generalized for the q-Fourier transform
of q-Gaussians with nonzero means. Namely, let μ �= 0 be a real number, and

Yμ,q(ξ) =
∫ μ+K

μ−K

e−(x−μ)2+ixξ
q dx.

Then the associated functional differential equation for Yμ,qn
with qn ∈ (0, 3) takes the form

2
√

qn

dYμ,qn
(ξ)

dξ
+ ξY μ

qn
,q

n−2
(
√

qnξ) − 2iμ
√

qn Yμ,qn
(ξ) = I(0,1)(qn)rqn

ξ
1

1−qn . (22)

3.2. Is the q-Fourier transform of a q-Gaussian a q ′-Gaussian?

In this section we discuss a question important from applications point of view. Namely, we
prove when the q-Fourier transform of a q-Gaussian is a q ′-Gaussian with some index q ′ in
(−∞, 3). With this aim we introduce the set of functions

G =
⋃
q<3

Gq, where Gq = {
f : f (x) = ae−βx2

q , a > 0, β > 0
}
. (23)

It follows from relationship (11) that if the q-Fourier transform Fq[Gq(β, x)](ξ) of a q-
Gaussian is a q ′-Gaussian with some q ′ ∈ (−∞, 3), then Yq(ξ) must belong to G. Therefore,

7
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we will study the existence of a solution of functional differential equations (12) and (16) in
the set G.

Theorem 3.8. Let 1 � q < 3 and qn, n ∈ Nq, be the sequence defined in (8). Then the
functional differential equation

2
√

qn

dYqn
(ξ)

dξ
+ ξYq

n−2
(
√

qnξ) = 0, ξ ∈ R, (24)

has a unique solution Yqn
(ξ) ∈ G satisfying the condition

Yqn
(0) = Cqn

. (25)

This solution is specifically

Yqn
(ξ) = Cqn

e
− 3−qn

8 ξ 2

q
n+1

. (26)

Proof. Existence. It follows immediately from representation (26) that Yqn
(0) = Cqn

.

Furthermore,

dYqn
(ξ)

dξ
= −1

4
(3 − qn)Cqn

ξ

(
e
− 3−qn

8 ξ 2

qn+1

)qn+1

, (27)

Yq
n−2

(
√

qnξ) = Cqn−2e
−qn

3−qn−2
8 ξ 2

qn−1 . (28)

Due to the equation
(
e
y
q

)q = e
qy

2−1/q and part (i) of proposition 2.6, expression (27) can be
rewritten as

dYqn
(ξ)

dξ
= −1

4
(3 − qn)Cqn

ξ e
−qn

3−qn−2
8 ξ 2

qn−1 . (29)

Substituting (28) and (29) into (24), we obtain(
−√

qnCqn

3 − qn

2
+ Cqn−2

)
e
− qn(3−qn)

8 ξ 2

qn−1 = 0. (30)

Now taking into account part (ii) of proposition 2.6 we conclude that Yqn
(ξ) in (26) satisfies

(24).

Uniqueness. We note that | cosq(x)| � 1 for real x, if q > 1 (see [6]). This fact and
corollary 2.3 imply the following estimate:

|Yq(ξ)| =
∣∣∣∣
∫ ∞

−∞
e−x2+ixξ
q dx

∣∣∣∣ �
∫ ∞

−∞
e−x2

q dx = Cq. (31)

Assume that there are two solutions to problem (24)–(25), i.e. Yqn
and Ỹqn

. Then there difference
Zqn

(ξ) = Yqn
(ξ) − Ỹqn

(ξ) also satisfies equation (24), and the condition Zqn
(0) = 0. Now

estimate (31) yields Zqn
≡ 0, which, in turn, implies Yqn

≡ Ỹqn
. �

Corollary 3.9. Let qn � 1. Then

Fqn
[Gqn

](ξ) = e
− 3−qn

8β2−qn C
2(qn−1)
qn

ξ 2

qn+1 . (32)

Remark 3.10. Representation (32) was obtained in [6] by the contour integration technique.
The formula in (7) corresponds to the particular case n = 0 of (32).

8
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Remark 3.11. If q = 1, then the Cauchy problem (24)–(25) reads

2
dY1(ξ)

dξ
+ ξY1(ξ) = 0, Y1(0) = √

π,

and its unique solution is Y1(ξ) = √
πe−ξ 2/4. Besides corollary 3.9 we obtain

F

[√
β√
π

e−βx2

]
= e

− 1
4β

ξ 2

.

The density of the standard normal distribution corresponds to β = 1/2, giving the
characteristic function of the classic Gaussian.

Theorem 3.12. Let qn, n ∈ Nq, be a sequence defined in (8) with q < 1. Suppose that
qn �= m/(m + 1), m = 1, 2 . . . . Then the functional differential equation

2
√

qn

dYqn
(ξ)

dξ
+ ξYq

n−2
(
√

qnξ) = rqn
ξ

1
1−qn , ξ ∈ R, (33)

has no solution in G.

Proof. We recall that if q < 1 and n ∈ Nq, then qn < 1. Further, we note that a function
with compact support cannot solve equation (33). Since each function in Gq for q < 1 has a
compact support, the solution of equation (33) cannot belong to Gq, q < 1. Now assume that
Yqn

(ξ) ∈ Gq ′ and Yq
n−2

(ξ) ∈ Gq ′′ , with q ′ > 1 or q ′′ > 1 (the reader can easily verify that
q ′ �= 1 and q ′′ �= 1). In accordance with definition (23),

Yqn
(ξ) = ae

−bξ 2

q ′ and Yq
n−2

(ξ) = Ae
−Bξ 2

q ′′ ,

where a, b, A, B are some real positive numbers depending on qn. Then, for equation (33)
to be consistent,

2

1 − q ′ − 1 = 1

1 − qn

or
2

1 − q ′′ + 1 = 1

1 − qn

.

Solving these equations for q ′ and q ′′, one obtains q ′ = qn

2−qn
and q ′′ = 3qn−2

qn
. It follows

max(q ′, q ′′) < 1, since qn < 1. This contradicts the assumption that q ′ > 1, or q ′′ > 1. �

Next, we consider the cases q = 1
2 , 2

3 , . . . , m
m+1 , . . . , excluded from theorem 3.12. Direct

computations show that in two specific cases, namely q = 1/2 and q = 2/3, Y (q, ξ) ∈ G0

considered on the positivity intervals. Indeed,

Y 1
2
(ξ) = F 1

2

[
e−x2

1
2

]
(ξ) = 16

√
2

15

(
1 − 5

16
ξ 2

)
, (34)

which is nonnegative for ξ ∈ [−4/
√

5, 4/
√

5]. Therefore, on this interval we can associate it

with an element of G0, writing Y (1/2, ξ) = 16
√

2
15 e

−(5/16)ξ 2

0 ∈ G0. Similarly,

Y 2
3
(ξ) = F 2

3

[
e−x2

2
3

]
(ξ) = 32

√
3

35

(
1 − 7

24
ξ 2

)
∈ G0, (35)

on the positivity interval
(−2

√
6
7 ,2

√
6
7

)
.

However, Y (q, ξ) does not belong to G for any other value of q = 3/4, 4/5, . . . . In order
to show this first we derive an explicit form for Pm+1(ξ) = Ym/(m+1)(ξ). Recall that Pm+1(ξ)

is a polynomial of order m + 1 if m + 1 is even. Otherwise, it is a polynomial of order m.

9
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Theorem 3.13. Let q = m/(m + 1),m = 1, 2, . . . . Then Yq(ξ) = Pm+1(ξ) has the
representation

Pm+1(ξ) =
[ m+1

2 ]∑
k=0

(−1)k ( m + 12k) (m + 1)−k+ 1
2 B

(
k +

1

2
,m − 2k + 2

)
ξ 2k, (36)

where [x] is the integer part of x, and B(a, b) is Euler’s beta-function.

Proof. Recall that if q = m
m+1 , then Yq(ξ) has the form

Yq(ξ) = Pm+1(ξ) =
∫ √

m+1

−√
m+1

(
1 − 1

m + 1
x2 +

1

m + 1
ixξ

)m+1

dx.

We have

Pm+1(ξ) =
m+1∑
k=0

(m + 1k)Dk(m)
(iξ)k

(m + 1)k
,

where

Dk(m) =
∫ √

m+1

−√
m+1

(
1 − 1

m + 1
x2

)m−k+1

xk dx.

It is not hard to verify that Dk(m) = 0 if k is odd and

D2k(m) = (m + 1)k+1/2B(k + 1/2,m − 2k + 2)

for k = 0, . . . , [m+1
2 ], which implies representation (36). �

Theorem 3.14. Let q = m/(m + 1),m = 3, 4, . . . . Then Yq(ξ) /∈ G.

Proof. It follows from representation (36) that the polynomial Yq(ξ) = Pm+1(ξ), with the
first three (nonzero) terms indicated, reads

Yq(ξ) = D0(m)

[
1 − (m + 1)2 B

(
3
2 ,m

)
B

(
1
2 ,m + 2

)ξ 2 +
m(m + 1)3

2

B
(

5
2 ,m − 2

)
B

(
1
2 ,m + 2

) ξ 4 + · · ·
]

= D0(m)

[
1 − 2m + 3

8(m + 1)
ξ 2 +

(2m + 3)(2m + 1)

8(m + 1)2
ξ 4 + · · ·

]
, (37)

where

D0(m) = C m
m+1

=
√

m + 1B

(
1

2
,m + 2

)
=

√
m + 1(m + 1)!2m+2

(2m + 3)!!
.

Now assume that Yq(ξ) ∈ Gq
′ for some q ′ < 3. Then 1/(1 − q ′) = (m + 1)/2, or

q ′ = (m − 1)/(m + 1). Therefore,

Yq(ξ) = D0(m)[1 − β(m)ξ 2][ m+1
2 ],

where β(m) > 0 and |ξ | � 1/
√

β(m). Applying the binomial formula and indicating the first
three terms, one has

Yq(ξ) = D0(m)

[
1 − (m + 1)β(m)

2
ξ 2 +

(m2 − 1)[β(m)]2

8
ξ 4 + · · ·

]
. (38)

Comparing the second and third terms in (37) and (38), one obtains contradictory relations

β(m) = 2m + 3

4(m + 1)2

10
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and

[β(m)]2 = (3m + 3)(2m + 1)

(m − 1)(m + 1)3
�= (2m + 3)2

16(m + 1)4
= [β(m)]2, m = 3, 4, . . . ,

which completes the proof. �

Remark 3.15. Formula (36) for q = 1/2 and q = 2/3 gives

Y 1
2
(ξ) = 16

√
2

15

(
1 − 5

16
ξ 2

)
= 16

√
2

15
e
−(5/16)ξ 2

0 , ξ ∈
[
−4

√
5

5
,

4
√

5

5

]
,

and

Y 2
3
(ξ) = 32

√
3

35

(
1 − 7

24
ξ 2

)
= 32

√
3

35
e
− 7

24 ξ 2

0 , ξ ∈
[
−2

√
7

6
, 2

√
7

6

]
.

which coincide with (34) and (35), respectively. Both functions belong to G0.

Theorem 3.16. Let q < 0. Then Yq(ξ) /∈ G.

Proof. Repeating calculations used in proofs of theorems 3.2 and 3.3, it is not hard to verify
that the derivative of Yq(ξ) can be represented in the form

dYq(ξ)

dξ
= −ξ

2

∫ K

−K

(
e−x2+ixξ
q

)q
dx + Rqξ

1
1−q , (39)

where

Rq = (1 − q)
1

2(1−q)

sin
π

2(1 − q)
. (40)

We note that the condition q < 0 implies two statements important for further proof, namely
0 < 1

1−q
< 1, and Rq �= 0. Now assume that Yq ∈ Gq ′ with some q ′ ∈ (−∞, 3). In other

words, there are positive numbers a and b, such that Yq(ξ) = ae
−bξ 2

q ′ . Taking the first derivative

of the latter, equating it to the right-hand side of (39), and dividing both sides by ξ
1

1−q (ξ �= 0),
we obtain

ξ
− q

1−q

[
1

2

∫ K

−K

(
e−x2+ixξ
q

)q
dx − 2ab

(
e
−bξ 2

q ′
)q ′

]
= Rq, (41)

which must be valid for all ξ ∈ R. However, the left-hand side becomes arbitrarily small
for small ξ , since − q

1−q
> 0 and the expression in brackets has a finite limit at 0, while the

right-hand side is nonzero constant. This contradiction completes the proof. �

4. Some applications to the porous medium equation

In this section we discuss some applications of the q-Fourier transform Fq to nonlinear models
of partial differential equations. First we verify that the theorems proved in section 3 imply
that Fq transfers a q-Gaussian into a q1-Gaussian if q � 1, q1 = (1 + q)/(3 − q). Moreover, as
shown in [11], the operator Fq : Gq → Gq1 for q > 1 is invertible. These two facts have been
essentially used in [6, 10] for the proof of q-versions of the central limit theorem. Another
application of Fq, as sketched hereunder, shows that it can be used for establishing a relation
between the porous medium equation and a nonlinear ordinary differential equation (ODE)
similar to the usual Fourier transform.

The classic Fourier transform reduces the Cauchy problem for linear partial differential
equations of the form ut (t, x) = A(Dx)u(t, x)t > 0, x ∈ Rn, u(0, x) = ϕ(x), x ∈ Rn,where

11
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Dx = (D1, . . . , Dn),Dj = −i ∂
∂xj

, j = 1, . . . , n, and A(Dx) is an elliptic differential operator,
to an associated linear ODE with the parameter ξ ∈ Rn. In the particular case of n = 1 and
A(Dx) = d2

dx2 for the Fourier image û(t, ξ) of a solution u(t, x), we have a dual differential
equation

û′
t (t, ξ) = −ξ 2û(t, x), û(0, ξ) = ϕ̂(ξ), (42)

where ξ ∈ R1 is a parameter. This instance corresponds to the Fokker–Planck equation
without drift [15] for some classes of nonlinear differential equations.

We now demonstrate the similar role of Fq in the celebrated porous medium equation in
the superdiffusion regime ubiquitously found in physical phenomena [17–21] (and references
therein)4. Consider the following nonlinear diffusion equation with a singular diffusion
coefficient:

∂U

∂t
= (U 1−qUx)x, t > 0, x ∈ R1, q > 1. (43)

We look for a solution in the similarity set G∗
q = {U(t, x) : U(t, x) = taGq(β; tbx), a =

a(q), b = b(q) ∈ R1, β = β(q) > 0}, where a and β do not depend on t and x.

Proposition 4.1. Suppose U(t, x) ∈ G∗
q is a solution to equation (43). Then its q-Fourier

transform Ûq(t, ξ) = Fq[U(t, x)](ξ) satisfies the following nonlinear ordinary differential
equation with the parameter ξ :

(Ûq)
′
t = −B(β, q)ξ 2

t
q−1
3−q

(Ûq)
q1 , t > 0, (44)

where B(β, q) = 2−q

4β2−qC
q−1
q

and q1 = 1+q

3−q
.

Proof. Let U ∈ G∗
q be a solution to (43), i.e. for some a = a(q) and β = β(q) it has the

representation U(t, x) = taGq(β; tax). Then it follows from proposition 2.1 that

Ûq(t, ξ) = Fq[U(t, x)](ξ)

= Fq[Gq(β; x)]

(
ξ

ta(2−q)

)
= 1

Cq

Yq

((√
β

Cq

)q−1
ξ√

βta(2−q)

)
,

where Yq(ξ) is a solution to equation (24). Computing the derivative of Ûq(t, x) in variable t,

taking into account that a = −1/(3 − q) (see, e.g., [21]), and using equation (24), we obtain

(Ûq)t = − 2 − q

4β2−qC
2(q−1)
q

ξ 2(Ûq)
q1 ,

where q1 = (1 + q)/(3 − q). �

The inverse statement, given in the following formulation, is also true.

Proposition 4.2. Suppose V (t, ξ), V (0, ξ) = 1, is a solution to ODE with the parameter ξ

V ′ = −B(β, q)ξ 2

t
q−1
3−q

V q1 , t > 0, (45)

where B(q, β) and q1 are as in proposition 4.1. Then its inverse q-Fourier transform
U(t, x) = F−1

q [V (t, ξ)](x) exists and satisfies equation (43).

4 The monograph [21] contains different approaches to the solution of the porous medium equation.

12
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Proof. By separation of variables of (45) one can verify that its solution

V (t, ξ) = e
− 3−q

8β2−q C
q−1
q

(ξ t
2−q
3−q )

q1
.

By theorem 0.6 of paper [11] the inverse q-Fourier transform for V (t, ξ) exists, and by virtue
of propositions 2.1 and 2.4 it has the representation

U(t, x) = 1

t
1

3−q

Gq

(
β(q); x

t
1

3−q

)
, where β(q) = 1[

2(3 − q)C
1

q−1
q

] 2
3−q

. (46)

The latter is a solution to equation (43); see [21]. �

Note that if the initial condition is given in the form U(0, x) = δ(x) with the Dirac delta
function, and q = 1, then we obtain (42) (ϕ̂(ξ) ≡ 1), in which β = 1/4, B(β, 1) = 4β = 1.

In order to study price fluctuations in stock markets a stochastic process Xt = lnS(t+t0)

lnS(t0)

representing log-returns was introduced in [16]. Here S(t) is the price at time t. Xt solves a
stochastic differential equation dXt = τ dt + σ d�t, where τ and σ are the drift and volatility
coefficients respectively, and �t is a solution to the Îto stochastic differential equation

d�t = [P(�t)]
1−q

2 dBt, t > t0. (47)

In this equation Bt is a Brownian motion, and P is a q-Gaussian distribution function. The
corresponding Fokker–Planck-type equation in the case τ = 0, σ = 1 reads

∂V (x, t |x ′, t ′)
∂t

= ([V (x, t |x ′, t ′)]2−q)xx, (48)

which can easily be reduced to the form (43). From the financial applications point of view
it is important to know the properties of the stochastic process Xt, since it can be considered
as a q-alternative to the Brownian motion. One can effortlessly verify that if U(t, x) is a
solution to equation (43) for t > 0 with an initial condition U(0, x) = f (x), then a solution
V (t, x), t > t ′, to the same equation (43) considered for t > t ′ with an initial condition
V (t ′, x) = f (x) can be represented in the form V (t, x) = U(t − t ′, x), t > t ′. It follows that
Xt has stationary increments.

Concluding the discussion we note that solution (46) corresponds to the solution obtained
from an ansatz [20] which is in accordance with the generalized central limit theorem presented
in [6]. The method we have just presented for the model case can be implemented for other
more general cases as well. For instance, the Fokker–Planck-type equation associated with a
process Xt with constant drift τ = μ �= 0, due to a term −2iμ

√
qn Yμ,qn

(ξ) in equation (22),
has an additional drift term on the right-hand side of equation (48). We also note that with
more routine calculations the method can be extended to the case of time-dependent drift and
diffusion coefficients. We intend to present all the routine calculations in the general case of
linear external forces in a separate paper.

5. Conclusion

Summarizing, we have the following general picture for the q-Fourier transform of q-
Gaussians.

(1) The case 1 � q < 3:
(1a) the q-Fourier transform acts as Fq : Gq → Gq ′ ;
(1b) the relation between q and q ′ is given by q ′ = 1+q

3−q
.

13
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(2) The case q = 1
2 or q = 2

3 : in this case the operator acts as Fq : Gq → G0. Relationship
(1b) is failed.

(3) The case q < 1, but q �= 1
2 , 2

3 : in this case (1a) is failed, in the sense that there is no q ′

such that the q-Fourier transform of a q-Gaussian would be a q ′-Gaussian.

The lesson we have learnt from the above analysis is that the q-Fourier transform defined
by formula (1) (or, the same, by formula (3)) is rich in content and applications if q ∈ [1, 3).

Its important applications in the case q > 1 are given in [6] for the proof of the q-central limit
theorem, and in [9] for the classification of (q, α)-stable distributions. Another application
of the operator Fq to the porous medium equation and related stochastic differential models
is discussed in section 4 of the current paper. What concerns the case q < 1, the q-Fourier
transform defined by formula (1) does not possess the properties valid in the case 1 � q < 3.

Therefore, the methods developed for q � 1 are not applicable in the case q < 1. The study
of applications of the q-Fourier transform (or its alternatively defined version) to problems
mentioned above, including the q-central limit theorem, remains a challenging open question
in the case q < 1.
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